Share This
Связаться со мной
Крути в низ
Categories
//Python AI в StarCraft II. Часть XVII: продолжаем обучение

Python AI в StarCraft II. Часть XVII: продолжаем обучение

31.05.2021Category : Python

Предыдущая статья — Python AI в StarCraft II. Часть XVI: изменение визуализации.

В этой части серии статей про использование AI в игре Starcraft II мы будем обучать и тестировать новую модель.

Обучающие данные можно скачать вот здесь.

Обучение новой модели будет происходить примерно так же, как и раньше, мы лишь добавим несколько опций:

import tensorflow as tf import keras.backend.tensorflow_backend as backend import keras  # Keras 2.1.2 and TF-GPU 1.9.0 from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Conv2D, MaxPooling2D from keras.callbacks import TensorBoard import numpy as np import os import random import cv2 import time   def get_session(gpu_fraction=0.85):     gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)     return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) backend.set_session(get_session())   model = Sequential() model.add(Conv2D(32, (7, 7), padding='same',                  input_shape=(176, 200, 1),                  activation='relu')) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2))  model.add(Conv2D(64, (3, 3), padding='same',                  activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2))  model.add(Conv2D(128, (3, 3), padding='same',                  activation='relu')) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2))  model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(14, activation='softmax'))  learning_rate = 0.001 opt = keras.optimizers.adam(lr=learning_rate)#, decay=1e-6)  model.compile(loss='categorical_crossentropy',               optimizer=opt,               metrics=['accuracy'])  tensorboard = TensorBoard(log_dir="logs/STAGE2-{}-{}".format(int(time.time()), learning_rate))  train_data_dir = "train_data"  model = keras.models.load_model('BasicCNN-5000-epochs-0.001-LR-STAGE2')   def check_data(choices):     total_data = 0      lengths = []     for choice in choices:         print("Length of {} is: {}".format(choice, len(choices[choice])))         total_data += len(choices[choice])         lengths.append(len(choices[choice]))      print("Total data length now is:", total_data)     return lengths   hm_epochs = 5000  for i in range(hm_epochs):     current = 0     increment = 50     not_maximum = True     all_files = os.listdir(train_data_dir)     maximum = len(all_files)     random.shuffle(all_files)      while not_maximum:         try:             print("WORKING ON {}:{}, EPOCH:{}".format(current, current+increment, i))              choices = {0: [],                        1: [],                        2: [],                        3: [],                        4: [],                        5: [],                        6: [],                        7: [],                        8: [],                        9: [],                        10: [],                        11: [],                        12: [],                        13: [],                        }              for file in all_files[current:current+increment]:                 try:                     full_path = os.path.join(train_data_dir, file)                     data = np.load(full_path)                     data = list(data)                     for d in data:                         choice = np.argmax(d[0])                         choices[choice].append([d[0], d[1]])                 except Exception as e:                     print(str(e))              lengths = check_data(choices)              lowest_data = min(lengths)              for choice in choices:                 random.shuffle(choices[choice])                 choices[choice] = choices[choice][:lowest_data]              check_data(choices)              train_data = []              for choice in choices:                 for d in choices[choice]:                     train_data.append(d)              random.shuffle(train_data)             print(len(train_data))              test_size = 100             batch_size = 128  # 128 best so far.              x_train = np.array([i[1] for i in train_data[:-test_size]]).reshape(-1, 176, 200, 1)             y_train = np.array([i[0] for i in train_data[:-test_size]])              x_test = np.array([i[1] for i in train_data[-test_size:]]).reshape(-1, 176, 200, 1)             y_test = np.array([i[0] for i in train_data[-test_size:]])              model.fit(x_train, y_train,                       batch_size=batch_size,                       validation_data=(x_test, y_test),                       shuffle=True,                       epochs=1,                       verbose=1, callbacks=[tensorboard])              model.save("BasicCNN-5000-epochs-0.001-LR-STAGE2")         except Exception as e:             print(str(e))         current += increment         if current > maximum:             not_maximum = False

На обучение ушло немало времени, но зато вот что у нас получилось:

python ai v starcraft ii chast xvii prodolzhaem obuchenie f591210 - Python AI в StarCraft II. Часть XVII: продолжаем обучение

Не так уж и плохо. При наличии четырнадцати вариантов точность в 0.4 вполне приемлема. Но только реальные игры покажут нам настоящий результат. Точность в 0.4 значит лишь то, что модель обучилась некоторым вещам, но совсем не обязательно равномерно.

Тем не менее, давайте запустим игру и посмотрим, что у нас вышло:

''' ''' import tensorflow as tf import keras.backend.tensorflow_backend as backend import sc2 from sc2 import run_game, maps, Race, Difficulty, Result from sc2.player import Bot, Computer from sc2 import position from sc2.constants import NEXUS, PROBE, PYLON, ASSIMILATOR, GATEWAY, CYBERNETICSCORE, STARGATE, VOIDRAY, SCV, DRONE, ROBOTICSFACILITY, OBSERVER, ZEALOT, STALKER import random import cv2 import numpy as np import os import time import math import keras #os.environ["SC2PATH"] = '/home/paperspace/Desktop/testing_model/StarCraftII/' HEADLESS = False def get_session(gpu_fraction=0.3): """Assume that you have 6GB of GPU memory and want to allocate ~2GB""" gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) backend.set_session(get_session()) class SentdeBot(sc2.BotAI): def __init__(self, use_model=False, title=1): self.MAX_WORKERS = 50 self.do_something_after = 0 self.use_model = use_model self.title = title ############################### # DICT {UNIT_ID:LOCATION} # every iteration, make sure that unit id still exists! self.scouts_and_spots = {} # ADDED THE CHOICES # self.choices = {0: self.build_scout, 1: self.build_zealot, 2: self.build_gateway, 3: self.build_voidray, 4: self.build_stalker, 5: self.build_worker, 6: self.build_assimilator, 7: self.build_stargate, 8: self.build_pylon, 9: self.defend_nexus, 10: self.attack_known_enemy_unit, 11: self.attack_known_enemy_structure, 12: self.expand, # might just be self.expand_now() lol 13: self.do_nothing, } self.train_data = [] if self.use_model: print("USING MODEL!") self.model = keras.models.load_model("STAGE2V2") def on_end(self, game_result): print('--- on_end called ---') print(game_result, self.use_model) if self.use_model: with open("gameout-model-vs-easy.txt","a") as f: f.write("Model {} - {}n".format(game_result, int(time.time()))) async def on_step(self, iteration): self.time = (self.state.game_loop/22.4) / 60 #print('Time:',self.time) if iteration % 5 == 0: await self.distribute_workers() await self.scout() await self.intel() await self.do_something() def random_location_variance(self, location): x = location[0] y = location[1] # FIXED THIS x += random.randrange(-5,5) y += random.randrange(-5,5) if x < 0: print("x below") x = 0 if y < 0: print("y below") y = 0 if x > self.game_info.map_size[0]: print("x above") x = self.game_info.map_size[0] if y > self.game_info.map_size[1]: print("y above") y = self.game_info.map_size[1] go_to = position.Point2(position.Pointlike((x,y))) return go_to async def scout(self): ''' ['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_game_data', '_proto', '_type_data', 'add_on_tag', 'alliance', 'assigned_harvesters', 'attack', 'build', 'build_progress', 'cloak', 'detect_range', 'distance_to', 'energy', 'facing', 'gather', 'has_add_on', 'has_buff', 'health', 'health_max', 'hold_position', 'ideal_harvesters', 'is_blip', 'is_burrowed', 'is_enemy', 'is_flying', 'is_idle', 'is_mine', 'is_mineral_field', 'is_powered', 'is_ready', 'is_selected', 'is_snapshot', 'is_structure', 'is_vespene_geyser', 'is_visible', 'mineral_contents', 'move', 'name', 'noqueue', 'orders', 'owner_id', 'position', 'radar_range', 'radius', 'return_resource', 'shield', 'shield_max', 'stop', 'tag', 'train', 'type_id', 'vespene_contents', 'warp_in'] ''' self.expand_dis_dir = {} for el in self.expansion_locations: distance_to_enemy_start = el.distance_to(self.enemy_start_locations[0]) #print(distance_to_enemy_start) self.expand_dis_dir[distance_to_enemy_start] = el self.ordered_exp_distances = sorted(k for k in self.expand_dis_dir) existing_ids = [unit.tag for unit in self.units] # removing of scouts that are actually dead now. to_be_removed = [] for noted_scout in self.scouts_and_spots: if noted_scout not in existing_ids: to_be_removed.append(noted_scout) for scout in to_be_removed: del self.scouts_and_spots[scout] if len(self.units(ROBOTICSFACILITY).ready) == 0: unit_type = PROBE unit_limit = 1 else: unit_type = OBSERVER unit_limit = 15 assign_scout = True if unit_type == PROBE: for unit in self.units(PROBE): if unit.tag in self.scouts_and_spots: assign_scout = False if assign_scout: if len(self.units(unit_type).idle) > 0: for obs in self.units(unit_type).idle[:unit_limit]: if obs.tag not in self.scouts_and_spots: for dist in self.ordered_exp_distances: try: location = next(value for key, value in self.expand_dis_dir.items() if key == dist) # DICT {UNIT_ID:LOCATION} active_locations = [self.scouts_and_spots[k] for k in self.scouts_and_spots] if location not in active_locations: if unit_type == PROBE: for unit in self.units(PROBE): if unit.tag in self.scouts_and_spots: continue await self.do(obs.move(location)) self.scouts_and_spots[obs.tag] = location break except Exception as e: pass for obs in self.units(unit_type): if obs.tag in self.scouts_and_spots: if obs in [probe for probe in self.units(PROBE)]: await self.do(obs.move(self.random_location_variance(self.scouts_and_spots[obs.tag]))) async def intel(self): ''' just simply iterate units. outline fighters in white possibly? draw pending units with more alpha ''' game_data = np.zeros((self.game_info.map_size[1], self.game_info.map_size[0], 3), np.uint8) for unit in self.units().ready: pos = unit.position cv2.circle(game_data, (int(pos[0]), int(pos[1])), int(unit.radius*8), (255, 255, 255), math.ceil(int(unit.radius*0.5))) for unit in self.known_enemy_units: pos = unit.position cv2.circle(game_data, (int(pos[0]), int(pos[1])), int(unit.radius*8), (125, 125, 125), math.ceil(int(unit.radius*0.5))) try: line_max = 50 mineral_ratio = self.minerals / 1500 if mineral_ratio > 1.0: mineral_ratio = 1.0 vespene_ratio = self.vespene / 1500 if vespene_ratio > 1.0: vespene_ratio = 1.0 population_ratio = self.supply_left / self.supply_cap if population_ratio > 1.0: population_ratio = 1.0 plausible_supply = self.supply_cap / 200.0 worker_weight = len(self.units(PROBE)) / (self.supply_cap-self.supply_left) if worker_weight > 1.0: worker_weight = 1.0 cv2.line(game_data, (0, 19), (int(line_max*worker_weight), 19), (250, 250, 200), 3) # worker/supply ratio cv2.line(game_data, (0, 15), (int(line_max*plausible_supply), 15), (220, 200, 200), 3) # plausible supply (supply/200.0) cv2.line(game_data, (0, 11), (int(line_max*population_ratio), 11), (150, 150, 150), 3) # population ratio (supply_left/supply) cv2.line(game_data, (0, 7), (int(line_max*vespene_ratio), 7), (210, 200, 0), 3) # gas / 1500 cv2.line(game_data, (0, 3), (int(line_max*mineral_ratio), 3), (0, 255, 25), 3) # minerals minerals/1500 except Exception as e: print(str(e)) # flip horizontally to make our final fix in visual representation: grayed = cv2.cvtColor(game_data, cv2.COLOR_BGR2GRAY) self.flipped = cv2.flip(grayed, 0) #print(self.flipped) resized = cv2.resize(self.flipped, dsize=None, fx=2, fy=2) if not HEADLESS: if self.use_model: cv2.imshow(str(self.title), resized) cv2.waitKey(1) else: cv2.imshow(str(self.title), resized) cv2.waitKey(1) def find_target(self, state): if len(self.known_enemy_units) > 0: return random.choice(self.known_enemy_units) elif len(self.known_enemy_structures) > 0: return random.choice(self.known_enemy_structures) else: return self.enemy_start_locations[0] async def build_scout(self): for rf in self.units(ROBOTICSFACILITY).ready.noqueue: print(len(self.units(OBSERVER)), self.time/3) if self.can_afford(OBSERVER) and self.supply_left > 0: await self.do(rf.train(OBSERVER)) break if len(self.units(ROBOTICSFACILITY)) == 0: pylon = self.units(PYLON).ready.noqueue.random if self.units(CYBERNETICSCORE).ready.exists: if self.can_afford(ROBOTICSFACILITY) and not self.already_pending(ROBOTICSFACILITY): await self.build(ROBOTICSFACILITY, near=pylon) async def build_worker(self): nexuses = self.units(NEXUS).ready.noqueue if nexuses.exists: if self.can_afford(PROBE): await self.do(random.choice(nexuses).train(PROBE)) async def build_zealot(self): #if len(self.units(ZEALOT)) < (8 - self.time): # how we can phase out zealots over time? gateways = self.units(GATEWAY).ready.noqueue if gateways.exists: if self.can_afford(ZEALOT): await self.do(random.choice(gateways).train(ZEALOT)) async def build_gateway(self): #if len(self.units(GATEWAY)) < 5: pylon = self.units(PYLON).ready.noqueue.random if self.can_afford(GATEWAY) and not self.already_pending(GATEWAY): await self.build(GATEWAY, near=pylon.position.towards(self.game_info.map_center, 5)) async def build_voidray(self): stargates = self.units(STARGATE).ready.noqueue if stargates.exists: if self.can_afford(VOIDRAY): await self.do(random.choice(stargates).train(VOIDRAY)) ##### else: await self.build_stargate() async def build_stalker(self): pylon = self.units(PYLON).ready.noqueue.random gateways = self.units(GATEWAY).ready cybernetics_cores = self.units(CYBERNETICSCORE).ready if gateways.exists and cybernetics_cores.exists: if self.can_afford(STALKER): await self.do(random.choice(gateways).train(STALKER)) if not cybernetics_cores.exists: if self.units(GATEWAY).ready.exists: if self.can_afford(CYBERNETICSCORE) and not self.already_pending(CYBERNETICSCORE): await self.build(CYBERNETICSCORE, near=pylon.position.towards(self.game_info.map_center, 5)) async def build_assimilator(self): for nexus in self.units(NEXUS).ready: vaspenes = self.state.vespene_geyser.closer_than(15.0, nexus) for vaspene in vaspenes: if not self.can_afford(ASSIMILATOR): break worker = self.select_build_worker(vaspene.position) if worker is None: break if not self.units(ASSIMILATOR).closer_than(1.0, vaspene).exists: await self.do(worker.build(ASSIMILATOR, vaspene)) async def build_stargate(self): cybernetics_cores = self.units(CYBERNETICSCORE) if self.units(PYLON).ready.exists: pylon = self.units(PYLON).ready.random if self.units(CYBERNETICSCORE).ready.exists: if self.can_afford(STARGATE) and not self.already_pending(STARGATE): await self.build(STARGATE, near=pylon.position.towards(self.game_info.map_center, 5)) ######################################## if not cybernetics_cores.exists: if self.units(GATEWAY).ready.exists: if self.can_afford(CYBERNETICSCORE) and not self.already_pending(CYBERNETICSCORE): await self.build(CYBERNETICSCORE, near=pylon.position.towards(self.game_info.map_center, 5)) async def build_pylon(self): nexuses = self.units(NEXUS).ready if nexuses.exists: if self.can_afford(PYLON) and not self.already_pending(PYLON): await self.build(PYLON, near=self.units(NEXUS).first.position.towards(self.game_info.map_center, 5)) async def expand(self): try: if self.can_afford(NEXUS) and len(self.units(NEXUS)) < 3: await self.expand_now() except Exception as e: print(str(e)) async def do_nothing(self): wait = random.randrange(7, 100)/100 self.do_something_after = self.time + wait async def defend_nexus(self): if len(self.known_enemy_units) > 0: target = self.known_enemy_units.closest_to(random.choice(self.units(NEXUS))) for u in self.units(VOIDRAY).idle: await self.do(u.attack(target)) for u in self.units(STALKER).idle: await self.do(u.attack(target)) for u in self.units(ZEALOT).idle: await self.do(u.attack(target)) async def attack_known_enemy_structure(self): if len(self.known_enemy_structures) > 0: target = random.choice(self.known_enemy_structures) for u in self.units(VOIDRAY).idle: await self.do(u.attack(target)) for u in self.units(STALKER).idle: await self.do(u.attack(target)) for u in self.units(ZEALOT).idle: await self.do(u.attack(target)) async def attack_known_enemy_unit(self): if len(self.known_enemy_units) > 0: target = self.known_enemy_units.closest_to(random.choice(self.units(NEXUS))) for u in self.units(VOIDRAY).idle: await self.do(u.attack(target)) for u in self.units(STALKER).idle: await self.do(u.attack(target)) for u in self.units(ZEALOT).idle: await self.do(u.attack(target)) async def do_something(self): the_choices = {0: "build_scout", 1: "build_zealot", 2: "build_gateway", 3: "build_voidray", 4: "build_stalker", 5: "build_worker", 6: "build_assimilator", 7: "build_stargate", 8: "build_pylon", 9: "defend_nexus", 10: "attack_known_enemy_unit", 11: "attack_known_enemy_structure", 12: "expand", 13: "do_nothing", } if self.time > self.do_something_after: if self.use_model: worker_weight = 1 zealot_weight = 1 voidray_weight = 1 stalker_weight = 1 pylon_weight = 1 stargate_weight = 1 gateway_weight = 1 assimilator_weight = 1 prediction = self.model.predict([self.flipped.reshape([-1, 176, 200, 1])]) weights = [1, zealot_weight, gateway_weight, voidray_weight, stalker_weight, worker_weight, assimilator_weight, stargate_weight, pylon_weight, 1, 1, 1, 1, 1] weighted_prediction = prediction[0]*weights choice = np.argmax(weighted_prediction) print('Choice:',the_choices[choice]) else: worker_weight = 8 zealot_weight = 3 voidray_weight = 20 stalker_weight = 8 pylon_weight = 5 stargate_weight = 5 gateway_weight = 3 choice_weights = 1*[0]+zealot_weight*[1]+gateway_weight*[2]+voidray_weight*[3]+stalker_weight*[4]+worker_weight*[5]+1*[6]+stargate_weight*[7]+pylon_weight*[8]+1*[9]+1*[10]+1*[11]+1*[12]+1*[13] choice = random.choice(choice_weights) try: await self.choices[choice]() except Exception as e: print(str(e)) y = np.zeros(14) y[choice] = 1 self.train_data.append([y, self.flipped]) while True: #if 1: run_game(maps.get("AbyssalReefLE"), [ Bot(Race.Protoss, SentdeBot(use_model=True, title=1)), #Bot(Race.Protoss, SentdeBot(use_model=False, title=2)), Computer(Race.Protoss, Difficulty.Easy), ], realtime=False)

Наблюдая за игрой этой модели, кажется, что она никогда не создает ассимилятор. Это весьма прискорбно!

Обратите внимание, что мы можем настроить в коде выходные веса нашей модели:

 if self.use_model: worker_weight = 1 zealot_weight = 1 voidray_weight = 1 stalker_weight = 1 pylon_weight = 1 stargate_weight = 1 gateway_weight = 1 assimilator_weight = 1 prediction = self.model.predict([self.flipped.reshape([-1, 176, 200, 1])]) weights = [1, zealot_weight, gateway_weight, voidray_weight, stalker_weight, worker_weight, assimilator_weight, stargate_weight, pylon_weight, 1, 1, 1, 1, 1] weighted_prediction = prediction[0]*weights choice = np.argmax(weighted_prediction) print('Choice:',the_choices[choice])

python ai v starcraft ii chast xvii prodolzhaem obuchenie 64b31e7 - Python AI в StarCraft II. Часть XVII: продолжаем обучение

Больше материалов по машинному обучению

Подписывайтесь на нас в Телеграм

Подписаться ×

Таким образом, можно попытаться начать их настраивать, чтобы все же построить потом ассимилятор. Мы советуем подойти к вопросу серьезно, иначе впоследствии будут приниматься одни и те же решения. Сперва мы остановились вот на этом:

 if self.use_model: worker_weight = 1.4 zealot_weight = 1 voidray_weight = 1 stalker_weight = 1 pylon_weight = 1.3 stargate_weight = 1 gateway_weight = 1 assimilator_weight = 2 prediction = self.model.predict([self.flipped.reshape([-1, 176, 200, 1])]) weights = [1, zealot_weight, gateway_weight, voidray_weight, stalker_weight, worker_weight, assimilator_weight, stargate_weight, pylon_weight, 1, 1, 1, 1, 1] weighted_prediction = prediction[0]*weights choice = np.argmax(weighted_prediction) print('Choice:',the_choices[choice])

Данная модель намного лучше, но все равно после нескольких игр победить нам не удалось. Мы могли бы продолжить серьезным образом корректировать данные веса, возможно даже предусмотреть их изменение с течением времени. Но все же это шаг назад, фактически снова переход к жестко заданным правилам, что кажется нам ошибочным.

Мы совсем не против того, чтобы иногда подправлять ту или иную незначительную проблему, но хотим сосредоточится на обучении нашей модели нейронной сети или вообще выработать новую стратегию.

Для начала продолжим обучение предыдущей модели. Также сейчас настало время настроить валидацию обучаемой модели. При таком количестве данных у нас не было проблем с переобучением, но все равно мы хотим видеть, в какой момент обучение перестает быть эффективным. Это поможет гораздо точнее определять нашу реальную производительность в игре.

Итак, мы создали новую директорию под названием out_of_sample и поместили в нее 100 новых игр. А затем немного поменяли код, чтобы их использовать:

import numpy as np import os import random import cv2 import time train_data_dir = "out_of_sample" def check_data(choices): total_data = 0 lengths = [] for choice in choices: print("Length of {} is: {}".format(choice, len(choices[choice]))) total_data += len(choices[choice]) lengths.append(len(choices[choice])) print("Total data length now is:", total_data) return lengths all_files = os.listdir(train_data_dir) random.shuffle(all_files) try: choices = {0: [], 1: [], 2: [], 3: [], 4: [], 5: [], 6: [], 7: [], 8: [], 9: [], 10: [], 11: [], 12: [], 13: [], } for file in all_files: try: full_path = os.path.join(train_data_dir, file) data = np.load(full_path) data = list(data) for d in data: choice = np.argmax(d[0]) choices[choice].append([d[0], d[1]]) except Exception as e: print(str(e)) lengths = check_data(choices) lowest_data = min(lengths) for choice in choices: random.shuffle(choices[choice]) choices[choice] = choices[choice][:lowest_data] check_data(choices) train_data = [] for choice in choices: for d in choices[choice]: train_data.append(d) random.shuffle(train_data) print(len(train_data)) x_oos = np.array([i[1] for i in train_data]).reshape(-1, 176, 200, 1) y_oos = np.array([i[0] for i in train_data]) np.save('out_of_sample/x_oos.npy',x_oos) np.save('out_of_sample/y_oos.npy',y_oos) except Exception as e: print(str(e))

Теперь мы можем просто загружать файлы из этой директории.

В нашем обучающем модуле мы просто изменим несколько строк:

 #test_size = 100 batch_size = 128 # 128 best so far. x_train = np.array([i[1] for i in train_data]).reshape(-1, 176, 200, 1) y_train = np.array([i[0] for i in train_data]) x_test = np.load('out_of_sample/x_oos.npy') y_test = np.load('out_of_sample/y_oos.npy')

Мы больше не нарезаем обучающие данные при помощи индексов. Теперь они поступают к нам в формате numpy.

python ai v starcraft ii chast xvii prodolzhaem obuchenie da521fe - Python AI в StarCraft II. Часть XVII: продолжаем обучение

Больше материалов по машинному обучению

Подписывайтесь на нас в Телеграм

Подписаться ×

  • 0 views
  • 0 Comment

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Свежие комментарии

    Рубрики

    About Author 01.

    Roman Spiridonov
    Roman Spiridonov

    Привет ! Мне 38 лет, я работаю в области информационных технологий более 4 лет. Тут собрано самое интересное.

    Our Instagram 04.

    Categories 05.

    © Speccy 2020 / All rights reserved

    Связаться со мной
    Close