Share This
Связаться со мной
Крути в низ
Categories
//5 фич Python, о которых я хотел бы узнать раньше

5 фич Python, о которых я хотел бы узнать раньше

12.12.2020Category : Python

Фичи поинтереснее, чем lambda, map и filter.

5 fich python o kotoryh ja hotel by uznat ranshe aa27aa0 - 5 фич Python, о которых я хотел бы узнать раньше

Python, несомненно, самый быстрорастущий язык программирования этого десятилетия — он очень мощный. Я писал на нем множество проектов — от интерактивных карт до блокчейна. В Python настолько много фич, что новичку порой тяжело освоить все сразу.

Python — язык с высоким уровнем абстракции. Это совершенно новый опыт — даже для тех программистов, которые переходят с Си или MATLAB. Я очень жалею, что не узнал о некоторых фичах Python раньше. Именно поэтому я выделил пять самых интересных из них.

1. Генератор списков — залог компактного кода

Много кто выделил бы лямбда-функции, map, filter и назвал их полезными «хитростями», о которых должен знать каждый новичок. Хоть я и уверен, что знать эти функции необходимо, но я бы не сказал, что они полезны — им не хватает гибкости. 

Lambda — способ написать однострочную функцию для одноразового использования. Чрезмерное использование функций отрицательно сказывается на производительности. Но существует map: она применяет функцию ко всем элементам итерируемого объекта. Filter же применяет функцию только к тем элементам , которые соответствуют условиям, определенным пользователем.

add_func = lambda z: z ** 2 is_odd = lambda z: z%2 == 1 multiply = lambda x,y: x*y  aList = list(range(10)) print(aList) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

5 fich python o kotoryh ja hotel by uznat ranshe 22a9555 - 5 фич Python, о которых я хотел бы узнать раньше

Генератор списков — лаконичный и гибкий способ создания списков из списков с помощью выражений и условий. Синтаксис простой — квадратные скобки. Внутри — выражение или функция. Применяются они к каждому элементу списка, который удовлетворяет заранее заданным условиям. Для обработки вложенных списков существуют вложенные генераторы — они гораздо удобнее, чем map и filter.

# Синтаксис генератора списков [ expression(x) for x in aList if optional_condition(x) ]
print(list(map(add_func, aList))) print([x ** 2 for x in aList]) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]  print(list(filter(is_odd, aList))) print([x for x in aList if x%2 == 1]) # [1, 3, 5, 7, 9] # [1, 3, 5, 7, 9] 

2. Грамотная манипуляция со списками — круговые списки

Python позволяет использовать отрицательную индексацию — aList[-1] == aList[len(aList)-1]. То есть, мы можем получить второй с конца элемент с помощью конструкции aList[-2].

Также мы можем использовать оператор среза с помощью синтаксиса aList[начало:конец:шаг]. То есть, вызов aList[2:5] возвращает [2, 3, 4]. Мы можем перевернуть список, вызвав aList[::-1]. Мне кажется, это очень элегантно. 

5 fich python o kotoryh ja hotel by uznat ranshe eb9e40f - 5 фич Python, о которых я хотел бы узнать раньше

Список может быть разделен на отдельные элементы или набор элементов и подсписки с помощью оператора *

aList = range(10) a, b, c, d = aList[0:4] print(f'a = {a}, b = {b}, c = {c}, d = {d}') # a = 0, b = 1, c = 2, d = 3  a, *b, c, d = aList print(f'a = {a}, b = {b}, c = {c}, d = {d}') # a = 0, b = [1, 2, 3, 4, 5, 6, 7], c = 8, d = 9

3. Zipping и enumerate в циклах for

Функция zip создает итератор, который объединяет элементы из нескольких списков. Он позволяет параллельно просмотреть несколько итерируемых объектов в цикле for и и выполнить их сортировку. Распаковка осуществляется с помощью оператора *.

numList = [0, 1, 2] engList = ['zero', 'one', 'two'] espList = ['cero', 'uno', 'dos'] print(list(zip(numList, engList, espList))) # [(0, 'zero', 'cero'), (1, 'one', 'uno'), (2, 'two', 'dos')]  for num, eng, esp in zip(numList, engList, espList):     print(f'{num} на английском {eng} и {esp} — на испанском.') # 0 на английском zero и cero — на испанском. # 1 на английском one и uno — на испанском. # 2 на английском two и dos — на испанском.
Eng = list(zip(engList, espList, numList)) Eng.sort() # sort by engList a, b, c = zip(*Eng)  print(a) print(b) print(c) # ('one', 'two', 'zero') # ('uno', 'dos', 'cero') # (1, 2, 0)

5 fich python o kotoryh ja hotel by uznat ranshe 17ffced - 5 фич Python, о которых я хотел бы узнать раньше

Поначалу Enumerate кажется довольно сложной, но во многих сценариях она может оказаться очень полезной. У этой функции есть автоматический счетчик — порой используется в циклах for. То есть, благодаря этой функции пропадает нужда в объявлении и инициализации переменных-счетчиков вроде counter = 0 и counter += 1. Enumerate и zip — два мощнейших инструмента, помогающих при создании циклов for. 

upperCase = ['А', 'Б', 'В', 'Г', 'Д', 'Е'] lowerCase = ['а', 'б', 'в', 'г', 'д', 'е'] for i, (upper, lower) in enumerate(zip(upperCase, lowerCase), 1):     print(f'{i}: {upper} и {lower}.') # 1: А и а. # 2: Б и б. # 3: В и в. # 4: Г и г. # 5: Д и д. # 6: Е и е.

4. Эффективное управление памятью — генераторы

Генераторы используются в случаях, когда необходимо вычислить большой набор данных, но нет возможности выделить память для всех результатов одновременно. Другими словами, они генерируют значения динамически и не хранят в памяти предыдущие значения. Следовательно, обход этой последовательности можно провести лишь раз. 

Полезны генераторы при работе с большими данными или генерации бесконечных последовательностей с помощью ключевого слова yield. Я очень часто пользуюсь генераторами при работе с моими проектами по data science. 

5. Изоляция — виртуальные окружения

Если бы вы могли вспомнить из этой статьи только один абзац, то им должен стать этот.

5 fich python o kotoryh ja hotel by uznat ranshe 2ed8ffe - 5 фич Python, о которых я хотел бы узнать раньше

Приложение Python — сложная зависимость разных библиотек. И ведь все они от разных разработчиков. Приложения создаются с помощью определенных настроек определенных библиотек. То есть, результаты одной версии библиотеки не могут воспроизвести результаты другой. Не существует унифицированной версии библиотеки, которая подойдет под любой проект.

conda create -n venv pip python=3.7  # select python version source activate venv ... source deactivate

Следовательно, для каждого приложения чрезвычайно важно создавать отдельные автономные виртуальные окружения venv. Делается это с помощью pip или conda.

  • 1 views
  • 0 Comment

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Свежие комментарии

    Рубрики

    About Author 01.

    Roman Spiridonov
    Roman Spiridonov

    Привет ! Мне 38 лет, я работаю в области информационных технологий более 4 лет. Тут собрано самое интересное.

    Our Instagram 04.

    Categories 05.

    © Speccy 2020 / All rights reserved

    Связаться со мной
    Close