Теория вероятностей в программировании и IT: где она используется, примеры
Расскажем, где может пригодиться теория вероятностей, и как базовое понимание теорвера могло бы в свое время спасти разработчиков iPod от серьезного конфуза. Теория вероятностей исследует свойства случайных величин, вероятности наступления случайных событий и их взаимосвязь. Первой серьезной попыткой использования математики для вычисления вероятностей стала «Книга об азартных играх» миланского врача, математика и заядлого игрока Джероламо Кардано, написанная в 1563 году. Брошюра оставалась неизданной почти 100 лет; когда ее наконец-то издали, свой вклад в теорию вероятностей уже внесли Христиан Гюйгенс, Блез Паскаль и Пьер Ферма. Математика вероятности зародилась как попытка поймать удачу за хвост – все ранние работы были так или иначе связаны с вычислением вероятностей выигрыша. Сейчас теория вероятностей помогает решать более важные проблемы – инженерные, технические и научные. Например, теорию вероятностей можно использовать: Этот список можно продолжать долго: теорию вероятностей применяют во многих других областях, включая биологию, социологию и экологию, поскольку она позволяет разрабатывать модели и методы для анализа и оптимизации систем и процессов в реальном мире. Как уже упоминалось выше, теория вероятностей применяется, прежде всего, в сложных отраслях разработки. Но это не значит, что разработчику софта попроще никогда не придется с ней столкнуться – вот один интересный случай из реальной жизни. Пользователи первых iPоd’ов были сильно разочарованы функцией Shuffle: они ожидали, что список воспроизведения будет перемешиваться так, чтобы треки воспроизводились в совершенно случайном порядке и без повторов. В реальности же плейлисты получались странными: многие песни сохраняли оригинальный альбомный порядок, некоторые проигрывались очень редко, а другие повторялись несколько раз подряд. Стиву Джобсу даже пришлось объяснять публике, что именно так и работает функция рандомизации. Это действительно так – использование генератора псевдослучайных чисел в любом языке программирования приводит к не самому случайному результату, как это демонстрирует, например, функция random в Python: Пользователей это объяснение не удовлетворило, и разработчикам пришлось делать алгоритм смешивания «менее случайным». Неизвестно, как именно программисты Apple решили эту проблему: возможно, воспользовались алгоритмом тасования Фишера-Йетса. В том же Python этот алгоритм используется в методе random.shuffle и выдает результат, который понравился бы любому владельцу iPоd’а: Мораль этой истории не только в том, что нужно изучать алгоритмы, чтобы не изобретать велосипед, но и в том, что такой результат можно легко предсказать заранее – для альбома с 12 треками вероятность повторения одной и той песни два и более раз подряд достигает 16,67%: Результат: Теория вероятностей тесно связана со статистикой и комбинаторикой: во всех приведенных ниже примерах подразумевается использование статистических и комбинаторных методов наряду с вероятностными. Байесовская сеть – вероятностная модель, которую используют для представления зависимостей между различными переменными в системе. Байесовские сети оценивают вероятности различных событий на основе имеющихся данных.Такие модели применяют для классификации, регрессии, кластеризации и других задач машинного обучения. Наивный байесовский классификатор – простой алгоритм машинного обучения, который использует теорию вероятностей для классификации данных. Алгоритм предполагает, что все признаки независимы друг от друга – это обеспечивает быструю и эффективную обработку больших объемов данных. Наивный Байес помогает классифицировать текстовые документы, фильтровать спам, распознавать речь. Марковские модели – вероятностные модели, которые используют для анализа последовательностей самых разных данных – текстов, звуковых записей и временных рядов. Они помогают прогнозировать будущие значения и классифицировать последовательности. Скрытые марковские модели – вероятностные модели, которые используют для анализа последовательностей данных, где каждое состояние не наблюдается напрямую, но может быть выведено из наблюдаемых данных. Такие модели состоят из конечного числа скрытых состояний, в которых может находиться система, и наблюдаемых событий, которые описывают систему, но не полностью. Каждое состояние имеет определенную вероятность перехода в другое скрытое состояние, и вероятности переходов определяются только текущим скрытым состоянием. Гауссовский процесс – вероятностная модель для аппроксимации сложных функций. ГП можно использовать для прогнозирования временных рядов, моделирования неопределенности в данных и других задач. Метод максимального правдоподобия – метод оценки параметров вероятностной модели на основе имеющихся данных. Его можно использовать для обучения моделей машинного обучения, например линейной и логистической регрессии. Оценка надежности результатов – теорию вероятности используют для оценки надежности результатов, полученных из разных экспериментов: она помогает оценить вероятность того, что полученные данные не случайны. Предсказание будущих результатов – с помощью теории вероятности прогнозируют будущие результаты на основе имеющихся данных. Модели, основанные на вероятностных методах, могут прогнозировать показатели эффективности бизнеса, поведение пользователей и т.д. Классификация данных – уже упомянутые байесовские сети помогают определить, к какому классу должен быть отнесен определенный объект. Анализ неопределенности – теория вероятности помогает оценить риски и вероятности появления разных событий и исходов. Моделирование данных – с помощью теории вероятности разрабатывают модели, которые помогают исследователям выявить взаимосвязь между разными переменными и предсказать будущие значения системы. Анализ временных рядов – вероятностные модели помогают предсказать доходы, расходы и другие показатели, которые зависят от множества различных факторов. Анализ случайных чисел – теорию вероятностей использует для анализа генерации случайных чисел и определения того, насколько они действительно случайны. Это помогает оценить стойкость криптографических алгоритмов и предотвратить эксплойты, основанные на определении случайных чисел. Анализ стойкости шифров – теорвер помогает определить вероятность расшифровки сообщения без знания ключа шифрования. Методы теории вероятностей применяют для брутфорс-атак (перебора ключей) на криптографические алгоритмы и для определения стойкости алгоритмов перед их использованием. Разработка новых криптографических алгоритмов – теорию вероятностей применяют в теории информации, чтобы определить, какие алгоритмы являются наиболее эффективными для преобразования информации в зашифрованный формат. Анализ протоколов аутентификации – вероятностные методы используют для анализа протоколов аутентификации, которые обеспечивают проверку подлинности сообщений и безопасность связи. Теорвер помогает определить, насколько протоколы безопасны и стойки к подделке и атакам. Рекомендуем начать с увлекательной книги «Игра случая. Математика и мифология совпадения» Джозефа Мазура. Минимум сухой теории и вычислений, максимум поразительных историй о мистических совпадениях, которые можно объяснить математически – то, что нужно, чтобы избавиться от мыслей о том, что теория вероятностей – это нечто невероятно сложное и невыносимо скучное. После «Игры случая» можно переходить к признанной классике – книгам Е. С. Вентцель, написанным самостоятельно и в соавторстве с Л. А. Овчаровым: Вот еще несколько отличных учебников и пособий, которые пригодятся для самостоятельного изучения: Из книг можно почерпнуть необходимую теоретическую базу и основные подходы к решению умеренно сложных задач. Однако в ходе разработки сложных вероятностных моделей начинающие программисты неизбежно сталкиваются с одним и тем же вопросом – как воплотить теоретические знания в коде, который решает практические задачи. Эту проблему успешно решила «Библиотека программиста» на курсе Математика для Data Science – приходи, все прояснится. Интересно, хочу попробоватьЗачем разработчику теория вероятностей
Недостаточно случайный random
>>> import random >>> print(*[random.randint(1, 12) for i in range(12)]) 9 9 9 6 2 3 5 9 8 12 10 4
>>> lst = [int(i) for i in range(1, 13)] >>> random.shuffle(lst) >>> print(*lst) 9 6 1 10 12 2 7 5 11 4 8 3
import random # создаем список случайных чисел от 1 до 12 lst = [random.randint(1, 12) for i in range(12)] print(*lst) # инициализируем счетчик повторяющихся пар элементов count = 0 # перебираем элементы списка от второго до предпоследнего for i in range(1, 11): if lst[i] == lst[i+1]: # если элементы равны count += 1 # увеличиваем счетчик повторяющихся элементов if count >= 1: # если уже есть повторение break # выходим из цикла, дальше проверять не нужно else: # если элементы не равны count = 0 # сбрасываем счетчик # определяем, есть ли повторение два и более раз подряд if count >= 1: probability = 100 * (count + 1) / len(lst) else: probability = 0 print(f"Вероятность повторения числа два и более раз подряд: {probability:.2f}%")
1 2 8 8 5 12 5 5 8 2 10 9 Вероятность повторения числа два и более раз подряд: 16.67%
Как теория вероятностей используется в разработке
Машинное обучение
Анализ данных и Data Science
Криптография
Что почитать по теории вероятностей и статистике
От теории – к практике
- 0 views
- 0 Comment