📊 С чего начать погружение в Big Data?
Как стать специалистом по Big Data? Какое направление выбрать: Data Scientist, Data Analyst или Data Engineer? С чего начать изучение этого направления, разберем информацию для начинающих IT-шников. Генерация и обмен большими данными между устройствами происходит практически в каждой социальной сфере. С Big Data работают такие гиганты Google, Uber, IBM, Amazon, оптимизируя работу с клиентами, снижая риск мошенничества и угроз безопасности данных. Специалисты по Big Data необходимы в сферах: маркетинга, поисковых технологий, ритейла, социальных сетях, играх, персонализации, речевых технологиях, финансовых учреждениях и в рекомендательных системах. Вакансии Data Scientist, Data Engineer и Data Analyst все чаще встречаются в объявлениях с привлекательно высокими зарплатами. С чего начать погружение в Big Data? Чтобы влиться в это направление, рассмотрим основные знания, навыки и технологии, которые стоит изучить новичку для поиска работы. Существует три основных направления специалистов по Big Data: Data Science, Data Engineer, Data Analyst. Всем им желательно иметь высшее образование (бакалавр, магистр) по техническим специальностям: компьютерные системы, информационные технологии, экономическая кибернетика или подобным. Разберем направления работы экспертов по большим данным: Специалист по Big Data должен знать, что такое самодисциплина и уметь следовать рабочему процессу, который бывает монотонным и однообразным. Для работы с большими данными, необходимо иметь хотя бы базовые знания: Исследователь, ученый по данных (Data Scientist) в основном занимается извлечением полезной информации из массивов сведений. Основные знания, которыми должен обладать специалист Data Scientist: Роли в Data Engineering: Каждому из перечисленных специалистов важно понимать, как работают операционные системы, а также обладать навыками машинного обучения. Для аналитика не обязательно высшее образование в области информационных технологий. Однако Data Analyst должен разбираться в бизнес-процессах, понимать статистику, выполнять машинное обучение, уметь работать с инструментами. Типа анализа данных: В обязанности аналитика также входят задачи по Business Inteligence (BI) и оптимизации процессов на производстве. Специалист должен знать методы анализа бизнес-процессов: SWOT, ABC, IDEF, BPMN, ССП, PDCA, EPC и прочие. Базовые навыки Data Analyst: Дополнительно аналитик может использовать Apache Storm, Apache Kinesis, Apache Spark Streaming. Специалистам по Big Data нужно уметь строить графические модели, используя байесовские и нейронные сети, кластеризацию и виды анализа. Data Scientist, Data Analyst или Data Engineer должны обладать навыками работы с Data Lakes (озерами данных), а также разбираться в вопросах безопасности и управления данными (Data Governance). Стать экспертом поможет углубленная проработка каждого из навыков. *** Если вы только начинаете путь в профессии, обратите внимание на Факультет аналитики Big Data образовательной онлайн-платформы GeekBrains. Вы научитесь собирать и анализировать данные, извлекать полезную информацию и находить закономерности. После обучения сможете проверять гипотезы и помогать бизнесу принимать взвешенные решения. Занятия под руководством опытных наставников и поддержка опытных HR помогут вам продвинуться по карьерной лестнице. Специализированный опыт не потребуется: программа предполагает освоение профессиональных навыков с нуля. Интересно, хочу попробоватьНаправления в Big Data
Что нужно знать Data Scientist?
Что следует изучать Data Engineer?
Какой базой должен обладать Data Analyst
- 0 views
- 0 Comment
Свежие комментарии