Рассказываем про эффективное использование данных в бизнесе на примере внедрения технологий Data Science в компании М.Видео-Эльдорадо. Data-driven – это о компании, которая не только принимает решения на основе данных, но и извлекает из них конкурентные преимущества. В течение последних трех лет М.Видео-Эльдорадо стремится к максимальной персонализации клиентского опыта и автоматизации операций через эффективное использование данных, поэтому встраивает технологии Data Science в свои бизнес-процессы. Группа создает и внедряет рекомендательные модели по планированию ассортимента, цен и промо, сервисы персонализированного подбора товаров, клиентский чат-бот с NLP-модулем, видеоаналитику и Computer vision в магазинах. Рекомендательные сервисы и персонализация Рекомендательные сервисы и персонализация – одно из первых и самых перспективных направлений внедрения технологий Data Science. Данные о клиентах включают социально-демографические сведения, историю покупок, поведение клиентов на сайте (какие товары пользователь добавлял в корзину, просматривал и т.д.), историю коммуникаци, изменения бонусного счета, а также предпочтения в способах оплаты, брендах и ценовых сегментах. На основе собранных данных создают модели для персонализации клиентского опыта и рекомендации товарных категорий: конкретных популярных и новых моделей техники, предложения похожих или сопутствующих товаров, аксессуаров. Маркетинг на основе анализа данных позволяет предугадывать желания клиентов и увеличивать конверсию сайта и мобильного приложения. Например, в сценариях «хиты», «новинки», «в тренде» модель выдает подборку товаров и реагирует на активность взаимодействия пользователей с предложенными вариантами. Наиболее успешные стратегии получают больший вес среди других и показываются чаще. Аналогично ранжируются и наиболее привлекательные товары внутри одной товарной стратегии. Ассортимент на основе потребностей клиентов Прогнозная аналитика и рекомендательные сервисы применимы и для повышения операционной эффективности внутренних процессов. Например, таких традиционных для ритейла как планирование ассортимента, ценообразование и настройка промо. В 2021 году М.Видео-Эльдорадо почти полностью перешла на формирование ассортимента в каждом из более чем 1200 магазинов на основе машинных рекомендаций. Продукт анализирует пользовательские сессии, данные о совместных просмотрах моделей товаров на сайте. Таким образом он выявляет потребности клиентов и кластеризует товары по потребностям. Так, если клиент просматривает несколько товаров из одной категории в рамках одной сессии, то с высокой степенью вероятности эти товары для него очень близки. Если подобным поведением отличаются и другие пользователи, между этими товарами точно есть что-то общее. Обработав большой массив данных, модель формирует дерево клиентских предпочтений, которое фиксирует выявленные потребности пользователей. На втором этапе эти потребности прогоняются через рекомендательный алгоритм, который также учитывает особенности спроса и формат разных магазинов, коэффициент уникальности каждого товара и заданные бизнес-цели компании. На выходе выдает рекомендацию, какие модели поставить на полку в каждой товарной категории, чтобы удовлетворить ожидания максимального числа клиентов и не занимать ограниченное розничное пространство взаимозаменяемыми устройствами. Коммерческие менеджеры, в свою очередь, могут принять рекомендацию системы или внести корректировки, исходя из своей экспертизы. Управление ценами и промо Цель этой категории data-driven продуктов – автоматизированное управление ценами и промоакциями на товары с помощью умных алгоритмов. Для этого компания внедряет инструменты принятия решений на основе машинных алгоритмов и автоматизированных бизнес-правил. Для ценообразования определяют эластичность товара к изменению цен, сегментируют товары по степени чувствительности к цене и разрабатывают ценовые правила/стратегии для разных сегментов. Для прогнозирования эффекта от промоакций компания также анализирует плановые цены/скидки, промо-акции, доступность и сезонность. Также учитываются исторические данные: продажи, цены/скидки, промо, доступность, активность конкурентов. Через анализ поведения клиентов на сайте проводится оценка товаров, которые потенциально конкурируют друг с другом. Далее создается прогнозная модель продаж, которая позволяет через сценарное моделирование на уровне категорий и товаров провести ретро-анализ прошлых акций, рассчитать “честный” инкрементальный эффект промо на продажи и оценить влияние ключевых факторов. В итоге формируется календарь промо-акций, целей на промо-акцию и список моделей на будущие акции. Чат-бот Чат-бот Алена обрабатывает входящие обращения клиентов М.Видео на сайте, в приложении и мессенджерах, распознает их суть и имитирует живое общение с помощью NLP-алгоритмов. Компания за год смогла значительно повысить уровень автоматизации бота с 20 до 50%. Алена повышает качество сервиса, собирает аналитику по темам, может осуществлять продажи. Клиентские обращения отрабатываются по нескольким сценариям на основе предмета, по которому клиент хочет получить информацию: заказы, товары, программа лояльности, магазины и несколько видов сервисных запросов. По первоначальному запросу определяется сценарий для дальнейшего диалога. Если его уже разработали, общение продолжается с ботом. Если нет, то запрос переадресовывается оператору колл-центра. Наиболее сложный сценарий – подбор товара. Необходимо, чтобы бот “понял” клиента. Для этого разработчики группы создали алгоритм определения и классификации намерения клиента – он распознает товарную категорию, характеристики товара и нужные атрибуты. При этом, клиенты в общении с ботом используют привычную для них лексику – термины, которые плохо согласуются с табличными данными из товарных спецификаций. Соответственно, дополнительная задача -–автоматическое распознавание пользовательских терминов и связка этих двух словарей. Формирование финального списка подходящих товаров тоже непростая задача. Для начала, необходимо построить итоговый рейтинг по товарам с учетом заданной потребности и характеристик, после этого уточнить список, исходя из доступности товаров в регионе и возможных способов получения (доставка, самовывоз из разных точек). Дополнительно можно обратиться к другим ml-сервисам по рекомендации аксессуаров, расходных материалов и т.д. Видеоаналитика Видеоаналитика, по словам ритейлера, представляет особую гордость. Ее полностью разработали внутри дата-офиса группы и в данный момент масштабируют в 20 магазинах в Москве. Решение задействует данные с уже установленных в магазинах камер видеонаблюдения. По оценкам М.Видео-Эльдорадо, их продукт в несколько раз дешевле рыночных аналогов и уже доказывает коммерческую эффективность. Видеопоток передается в облако, где обрабатывается нейросетью на основе YOLO – решения для детекции множественных объектов на изображении. Сейчас реализованы три основных сценария использования полученных данных: «одинокий покупатель», «очередь у касс» и «тепловая карта магазина». Система в режиме реального времени анализирует поток данных из магазина, может отличить сотрудников от посетителей, а затем накладывает данные о местоположении людей на план магазина. Первым направлением видеоанализа стала быстрая помощь покупателям, которые уже некоторое время стоят у полки или перемещаются по торговому залу в поисках консультанта. ИТ-решение оперативно выявляет таких клиентов и отправляет о них уведомление сотрудникам магазина через чат-бот. Технология способствует повышению внимательности персонала к покупателям и росту качеству сервиса. С начала проекта количество уведомлений о необходимости помочь клиенту или открыть дополнительные кассы сократилось на 75%, а коэффициент конверсии вырос на 35% по сравнению с сопоставимыми магазинами. Нейросеть также анализирует количество посетителей в зоне выдачи товара и касс. Алгоритмы компьютерного зрения позволяют в режиме реального времени оптимизировать очереди и построить тепловые карты магазинов для изучения поведения клиентов с целью оптимизации ассортимента и выкладки. Заключение Дата-офис М.Видео-Эльдорадо не останавливается на достигнутом. В планах масштабирование работы с данными на всю компанию, цифровая трансформация и стирание границ между ИТ, данными и бизнесом, а также развитие навыков и компетенций по работе с данными у коллег вне дата-офиса. Для полной трансформации компании в data-driven ей необходимо развивать корпоративную культуру работы с данными как с активом и внедрять как можно больше эффективных продуктов Data Science related во все бизнес-стратегии.
Data-driven – это о компании, которая не только принимает решения на основе данных, но и извлекает из них конкурентные преимущества. В течение последних трех лет М.Видео-Эльдорадо стремится к максимальной персонализации клиентского опыта и автоматизации операций через эффективное использование данных, поэтому встраивает технологии Data Science в свои бизнес-процессы. Группа создает и внедряет рекомендательные модели по планированию ассортимента, цен и промо, сервисы персонализированного подбора товаров, клиентский чат-бот с NLP-модулем, видеоаналитику и Computer vision в магазинах.
Рекомендательные сервисы и персонализация – одно из первых и самых перспективных направлений внедрения технологий Data Science. Данные о клиентах включают социально-демографические сведения, историю покупок, поведение клиентов на сайте (какие товары пользователь добавлял в корзину, просматривал и т.д.), историю коммуникаци, изменения бонусного счета, а также предпочтения в способах оплаты, брендах и ценовых сегментах.
На основе собранных данных создают модели для персонализации клиентского опыта и рекомендации товарных категорий: конкретных популярных и новых моделей техники, предложения похожих или сопутствующих товаров, аксессуаров. Маркетинг на основе анализа данных позволяет предугадывать желания клиентов и увеличивать конверсию сайта и мобильного приложения.
Например, в сценариях «хиты», «новинки», «в тренде» модель выдает подборку товаров и реагирует на активность взаимодействия пользователей с предложенными вариантами. Наиболее успешные стратегии получают больший вес среди других и показываются чаще. Аналогично ранжируются и наиболее привлекательные товары внутри одной товарной стратегии.
Прогнозная аналитика и рекомендательные сервисы применимы и для повышения операционной эффективности внутренних процессов. Например, таких традиционных для ритейла как планирование ассортимента, ценообразование и настройка промо. В 2021 году М.Видео-Эльдорадо почти полностью перешла на формирование ассортимента в каждом из более чем 1200 магазинов на основе машинных рекомендаций.
Продукт анализирует пользовательские сессии, данные о совместных просмотрах моделей товаров на сайте. Таким образом он выявляет потребности клиентов и кластеризует товары по потребностям. Так, если клиент просматривает несколько товаров из одной категории в рамках одной сессии, то с высокой степенью вероятности эти товары для него очень близки.
Если подобным поведением отличаются и другие пользователи, между этими товарами точно есть что-то общее. Обработав большой массив данных, модель формирует дерево клиентских предпочтений, которое фиксирует выявленные потребности пользователей. На втором этапе эти потребности прогоняются через рекомендательный алгоритм, который также учитывает особенности спроса и формат разных магазинов, коэффициент уникальности каждого товара и заданные бизнес-цели компании. На выходе выдает рекомендацию, какие модели поставить на полку в каждой товарной категории, чтобы удовлетворить ожидания максимального числа клиентов и не занимать ограниченное розничное пространство взаимозаменяемыми устройствами. Коммерческие менеджеры, в свою очередь, могут принять рекомендацию системы или внести корректировки, исходя из своей экспертизы.
Цель этой категории data-driven продуктов – автоматизированное управление ценами и промоакциями на товары с помощью умных алгоритмов. Для этого компания внедряет инструменты принятия решений на основе машинных алгоритмов и автоматизированных бизнес-правил.
Для ценообразования определяют эластичность товара к изменению цен, сегментируют товары по степени чувствительности к цене и разрабатывают ценовые правила/стратегии для разных сегментов.
Для прогнозирования эффекта от промоакций компания также анализирует плановые цены/скидки, промо-акции, доступность и сезонность. Также учитываются исторические данные: продажи, цены/скидки, промо, доступность, активность конкурентов. Через анализ поведения клиентов на сайте проводится оценка товаров, которые потенциально конкурируют друг с другом. Далее создается прогнозная модель продаж, которая позволяет через сценарное моделирование на уровне категорий и товаров провести ретро-анализ прошлых акций, рассчитать “честный” инкрементальный эффект промо на продажи и оценить влияние ключевых факторов. В итоге формируется календарь промо-акций, целей на промо-акцию и список моделей на будущие акции.
Чат-бот Алена обрабатывает входящие обращения клиентов М.Видео на сайте, в приложении и мессенджерах, распознает их суть и имитирует живое общение с помощью NLP-алгоритмов. Компания за год смогла значительно повысить уровень автоматизации бота с 20 до 50%. Алена повышает качество сервиса, собирает аналитику по темам, может осуществлять продажи.
Клиентские обращения отрабатываются по нескольким сценариям на основе предмета, по которому клиент хочет получить информацию: заказы, товары, программа лояльности, магазины и несколько видов сервисных запросов. По первоначальному запросу определяется сценарий для дальнейшего диалога. Если его уже разработали, общение продолжается с ботом. Если нет, то запрос переадресовывается оператору колл-центра.
Наиболее сложный сценарий – подбор товара. Необходимо, чтобы бот “понял” клиента. Для этого разработчики группы создали алгоритм определения и классификации намерения клиента – он распознает товарную категорию, характеристики товара и нужные атрибуты. При этом, клиенты в общении с ботом используют привычную для них лексику – термины, которые плохо согласуются с табличными данными из товарных спецификаций. Соответственно, дополнительная задача -–автоматическое распознавание пользовательских терминов и связка этих двух словарей.
Формирование финального списка подходящих товаров тоже непростая задача. Для начала, необходимо построить итоговый рейтинг по товарам с учетом заданной потребности и характеристик, после этого уточнить список, исходя из доступности товаров в регионе и возможных способов получения (доставка, самовывоз из разных точек). Дополнительно можно обратиться к другим ml-сервисам по рекомендации аксессуаров, расходных материалов и т.д.
Видеоаналитика, по словам ритейлера, представляет особую гордость. Ее полностью разработали внутри дата-офиса группы и в данный момент масштабируют в 20 магазинах в Москве. Решение задействует данные с уже установленных в магазинах камер видеонаблюдения. По оценкам М.Видео-Эльдорадо, их продукт в несколько раз дешевле рыночных аналогов и уже доказывает коммерческую эффективность.
Видеопоток передается в облако, где обрабатывается нейросетью на основе YOLO – решения для детекции множественных объектов на изображении. Сейчас реализованы три основных сценария использования полученных данных: «одинокий покупатель», «очередь у касс» и «тепловая карта магазина». Система в режиме реального времени анализирует поток данных из магазина, может отличить сотрудников от посетителей, а затем накладывает данные о местоположении людей на план магазина.
Первым направлением видеоанализа стала быстрая помощь покупателям, которые уже некоторое время стоят у полки или перемещаются по торговому залу в поисках консультанта. ИТ-решение оперативно выявляет таких клиентов и отправляет о них уведомление сотрудникам магазина через чат-бот. Технология способствует повышению внимательности персонала к покупателям и росту качеству сервиса. С начала проекта количество уведомлений о необходимости помочь клиенту или открыть дополнительные кассы сократилось на 75%, а коэффициент конверсии вырос на 35% по сравнению с сопоставимыми магазинами. Нейросеть также анализирует количество посетителей в зоне выдачи товара и касс. Алгоритмы компьютерного зрения позволяют в режиме реального времени оптимизировать очереди и построить тепловые карты магазинов для изучения поведения клиентов с целью оптимизации ассортимента и выкладки.
Дата-офис М.Видео-Эльдорадо не останавливается на достигнутом. В планах масштабирование работы с данными на всю компанию, цифровая трансформация и стирание границ между ИТ, данными и бизнесом, а также развитие навыков и компетенций по работе с данными у коллег вне дата-офиса. Для полной трансформации компании в data-driven ей необходимо развивать корпоративную культуру работы с данными как с активом и внедрять как можно больше эффективных продуктов Data Science related во все бизнес-стратегии.
Ваш адрес email не будет опубликован. Обязательные поля помечены *
Сохранить моё имя, email и адрес сайта в этом браузере для последующих моих комментариев.
Δ
Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.