Share This
Связаться со мной
Крути в низ
Categories
//МТИ представил модель машинного обучения для поисков вариантов лечения Covid-19

МТИ представил модель машинного обучения для поисков вариантов лечения Covid-19

17.02.2021Category : My Habr

Команда отдела электротехники и компьютерных наук Массачусетского технологического института и Института данных, систем и общества разработала подход на основе машинного обучения для выявления уже имеющихся на рынке лекарств, которые потенциально могут быть перепрофилированы для борьбы с Covid-19.

mti predstavil model mashinnogo obuchenija dlja poiskov variantov lechenija covid 19 7897999 - МТИ представил модель машинного обучения для поисков вариантов лечения Covid-19

Система учитывает изменения экспрессии генов в клетках легких, вызванные как заболеванием, так и старением. Этот путь может быть эффективным для поиска лекарств для пожилых людей.

Исследователи уже идентифицировали три одобренных препарата, которые могут помочь в лечении коронавируса.

Команда обратила внимание на то, что Covid-19 причиняет больше вреда пожилым пациентам. Ученые предположили, что это связано не только с общим старением иммунной системы, но и с возрастными изменениями в легких. У пожилых легочная ткань демонстрирует отличные от молодых паттерны экспрессии генов.

Сначала исследователи сгенерировали большой список возможных лекарств с помощью техники машинного обучения, называемой автоэнкодером. Затем они составили карту сети генов и белков, участвующих как в процессе старения, так и в инфицировании SARS-CoV-2. Наконец, ученые использовали статистические алгоритмы, чтобы понять причинно-следственную связь в этой сети, что позволило им точно определить «вышестоящие» гены, вызывающие каскадные эффекты по всей сети. Препараты, нацеленные на эти вышестоящие гены и белки, должны помочь в борьбе с коронавирусом.

Чтобы создать первоначальный список потенциальных лекарств, автоэнкодер команды использовал два ключевых набора данных о паттернах экспрессии генов. Один набор данных показал, как экспрессия в различных типах клеток реагирует на ряд препаратов, уже имеющихся на рынке, а другой показывает, как экспрессия реагирует на инфекцию SARS-CoV-2. Автоэнкодер просмотрел наборы данных, чтобы выделить препараты, влияние которых на экспрессию генов, по-видимому, противодействует эффектам SARS-CoV-2.

Затем исследователи сузили список потенциальных лекарств, обратив внимание на ключевые генетические пути. Они картировали взаимодействия белков, вовлеченных в процессы старения и заражения Sars-CoV-2. Затем они определили области пересечения двух карт. Эти усилия позволили определить точную сеть экспрессии генов, на которую нужно воздействовать лекарству для борьбы с Covid-19 у пожилых пациентов.

Однако исследователям еще предстояло определить, какие гены и белки находятся «в восходящем направлении», то есть каскадно влияют на экспрессию других генов.

Команда использовала алгоритмы, которые выявляют причинно-следственные связи во взаимодействующих системах, чтобы превратить ненаправленную сеть в причинную. Она определила RIPK1 как целевой ген/белок для потенциальных препаратов Covid-19, поскольку он имеет множество нисходящих эффектов.

Исследователи составили список одобренных препаратов, которые действуют на RIPK1 и могут потенциально лечить Covid-19. Ранее эти препараты были одобрены для использования при раке. Другие препараты, которые также были идентифицированы сетью, включая рибавирин и квинаприл, уже проходят клинические испытания для борьбы с Covid-19.

Хотя это конкретное исследование было сосредоточено на Covid-19, исследователи говорят, что его рамки можно расширить и на другие заболевания.

Ранее группа ученых из МТИ и Кембриджского и Гарвардского университетов предложили использовать для анализа мутаций коронавируса искусственный интеллект, предназначенный для распознавания текста. Исследователи обнаружили, что вирус может мутировать таким образом, что сохраняет способность к инфицированию, но воспринимается иммунитетом человека по-другому — так же, как замена одного слова в предложении никак не влияет на грамматику и синтаксис, но меняет его значение.

Кроме того, в МТИ разработали модель искусственного интеллекта, которая способна распознать тип кашля больных коронавирусом даже при записи с мобильного телефона.

  • 0 views
  • 0 Comment

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Свежие комментарии

    Рубрики

    About Author 01.

    Roman Spiridonov
    Roman Spiridonov

    Привет ! Мне 38 лет, я работаю в области информационных технологий более 4 лет. Тут собрано самое интересное.

    Our Instagram 04.

    Categories 05.

    © Speccy 2020 / All rights reserved

    Связаться со мной
    Close