Share This
Связаться со мной
Крути в низ
Categories
//Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

01.06.2021Category : My Habr

Инженеры Калифорнийского университета в Сан-Диего разработали метаматериал, повышающий разрешение световой микроскопии с 200 до 40 нанометров. Исследователи совместили технологию с алгоритмической обработкой в MATLAB.

metamaterial i algoritmicheskaja obrabotka uvelichivajut razreshenie mikroskopa do 40 nm 5798be6 - Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

Несмотря на все модификации, предел разрешения световых микроскопов составляет 200 нанометров. С таким разрешением исследователи наблюдают за клетками, но изучение внутриклеточного пространства невозможно. Подобная визуализация возможна благодаря использованию других методов, например, электронной микроскопии. Но они дороги в обслуживании и производстве. Кроме того, такие методы не пригодны для наблюдения за живыми организмами, поскольку убивают их в процессе получения визуализации. 

Исследователи Калифорнийского университета добавили к оптическому микроскопу прослойку из гиперболического метаматериала (НММ) и повысили разрешение до 40 нанометров, не причиняя вреда микробам.

Прослойка состоит из предметного стекла с напылением из чередующихся слоёв серебра и кварцевого стекла. Метаматериал сокращает длину волн и рассеивает проходящий через него свет, образуя серию случайных пятнистых световых узоров. После специалист монтирует на стекло исследуемый образец. 

metamaterial i algoritmicheskaja obrabotka uvelichivajut razreshenie mikroskopa do 40 nm c2a64d9 - Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

(а). Изочастотная кривая воздуха, идеальный НММ по теории эффективной среды (ЕМТ) и практический НММ состоят из слоистых структур Ag и SiO2 (Bloch) на волне 488 нм. Волновой вектор kx и kz нормирован на волновой вектор k0 в воздухе. Допустимая k-пропускная способность выделена серым (воздух) и оранжевым (HMM). (b). Примерные спекл-структуры из различных материальных систем. Слева спекл без использования НММ (серая полоса на рисунке а), справа с НММ (бежевая полоса на рисунке а). Масштабная шкала 400 нанометров. (с) Подложка с покрытием из HMM проецирует объекты с ультратонкой структурой на предметы, лежащие на её внешней поверхности. (d) Схема неоднородной границы раздела между распыленным Ag и SiO2  

В ходе работы исследователи получили множество отснятых кадров, которые алгоритм реконструкции собрал в один снимок с высоким разрешением. Специалисты вели обработку реконструкцию изображений в MATLAB.

Для получения изображений исследователи используют камеру sCMOS. Время экспозиции составило 200 мс с частотой кадров 1 Гц. Реконструкция изображения 100х100 пикселей заняла 10 минут на настольном компьютере с видеокартой GTX 1080Ti и процессором i7-8700k. Реконструкция изображения 200х200 пикселей занимает до 30 минут. Каждое итоговое изображение содержит 80—500 подкадров. 

metamaterial i algoritmicheskaja obrabotka uvelichivajut razreshenie mikroskopa do 40 nm d87186a - Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

Художественная визуализация новой технологии микроскопии сверхвысокого разрешения. Живые клетки (красные) помещены на предметное стекло, покрытое рассеивающим свет материалом. Структурированный свет в наномасштабе (синий) генерируется метаматериалом и освещает клетки 

Исследователи проверили технологию на инвертированном микроскопе. У микроскопов прямого типа объектив находится над предметным стеклом с расположенным внизу осветительным прибором. У инвертированных микроскопов наоборот — объектив внизу, подсветка вверху. С их помощью исследователи изучают громоздкие объекты, например, мух или кору деревьев.

Используя новую технологию, учёные визуализировали микрофиламенты (нити белка актина) диаметром 6—8 нанометров в окрашенных флуоресцентным маркером клетках и крошечные флуоресцентные молекулы, находящиеся на расстоянии 40—80 нанометров друг от друга. В итоге исследователи получили изображения с высоким разрешением в двумерном пространстве. 

metamaterial i algoritmicheskaja obrabotka uvelichivajut razreshenie mikroskopa do 40 nm 7a02ed3 - Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

Сравнение изображений, полученных без использования метаматериала (слева) и с использованием метаматериала (справа). На визуализации изображены микрофиламенты маркированных клеток 

metamaterial i algoritmicheskaja obrabotka uvelichivajut razreshenie mikroskopa do 40 nm 715abb9 - Метаматериал и алгоритмическая обработка увеличивают разрешение микроскопа до 40 нм

ображений, полученных без использования метаматериала (слева) и с использованием метаматериала (справа). На визуализации изображены флуоресцентные молекулы

В прошлом году эта же группа исследователей применила метаматериал при флуоресцентной микроскопии и увеличила разрешение с 10 до 2,4 нанометров с сохранением цвета. В дальнейшем группа планирует объединить старое и новое исследования чтобы создать технологию для получения трёхмерных визуализаций живых клеток. 

Учёные утверждают, что использование метаматериала ускорит и удешевит дальнейшие исследования. Метаматериал прост в установке и не требует формирования особых условий и освещения в ходе работы.  

Материалы исследования опубликованы в статье «Metamaterial assisted illumination nanoscopy via random super-resolution speckles»в журнале Nature Doi.org/10.1038/s41467-021-21835-8

  • 8 views
  • 0 Comment

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Связаться со мной
Close